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We explore general properties of the main peak of the structure factor S(q)
near the melting temperature Tmelt in liquids confined in two dimensions,
especially for the one component plasma model and for monatomic liquids
interacting through inverse twelfth-power potentials. Those properties are
the height of the peak, S(qm), where qm is the position of maximum in the
peak, and the ratio between S(qm) and qm/Dq, where 2Dq is the width of the
peak. The results obtained are then compared with those for similar
systems in three dimensions. Other magnitude that we use to compare two-
dimensional and three-dimensional simple liquids is rm/Dr, where rm is the
position of the main peak in the pair distribution function g(r) and 2Dr is
the width of that peak.

Keywords: classical liquids; freezing; two-dimensional systems;
structure factor

The one component plasma (OCP) is a model in which a single species of charged
particles interacting via the Coulomb potential are immersed in a uniform
neutralising background of opposite charge. The OCP is characterised by the
plasma coupling parameter � defined as

� ¼
e2=rs
kBT

, ð1Þ

where rs measures the mean interparticle separation. That is, � is the ratio of
Coulomb energy e2/rs to the thermal energy kBT. In early work, Ferraz and March
[1] utilised available computer simulation results on the classical three-dimensional
(3D) OCP and plotted S(qm), the maximum height of S(q), that is, the height of the
main peak of the structure factor, versus �. The freezing value of � for the 3D
classical OCP model is approximately 160, and from that plot they were able to
obtain the value of S(qm) at freezing, namely (S(qm))Tmelt

¼ 2.7, where Tmelt indicates
the melting temperature. This is in conformity with the so-called Verlet rule [2]. The
plot of S(qm) versus � for the 3D OCP is redrawn in Figure 1.
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In the two-dimensional case (2D), the data available for the classical OCP is more

limited. Gann et al. [3] have performed Monte Carlo simulations for this system and
found that the freezing transition occurs at �¼ 125. These authors do not plot the

structure factor for this special value of �. However, they report the structure factors
corresponding to �¼ 36 and �¼ 90, and we have plotted the corresponding values of

S(qm) also in Figure 1. An extrapolation to �¼ 125 gives an estimate of the value of

S(qm) at freezing, that is, (S(qm))Tmelt
¼ 4.2, in the 2D case.

We next turn to discuss the calculation of S(q) by Broughton et al. [4] on a second
model of a 2D dense fluid, but now with inverse twelfth-power interaction. These

authors plot in their figures 11 and 12 two structure factors in the stable fluid region
for different densities �, that is, particles per unit area. The approximate 2D peak

heights are S(qm)¼ 4.4 for �¼ 0.971 (their state a) and S(qm)¼ 5.3 for �¼ 0.986
(state b), the last one practically corresponds to the freezing density. The difference

with respect to the OCP can be attributed to the different interparticle interaction. At

the same time as that work, Ramakrishnan [5] presented a density wave theory of
freezing in two dimensions following earlier work by Ramakrishnan and Yussouff [6]

on the liquid–solid transition in 3D. It is relevant here to note that in [6], a basic
justification for the Verlet rule [2] was put forward, based however on the

hypernetted chain (HNC) approximation in classical statistical mechanics. The later

independent studies of Haymet and Oxtoby [7] and March and Tosi [8] showed that
the HNC was essential in the theory of freezing developed in [6]. Ramakrishnan [5]

quoted the value of 5.0 for the height of the main peak of the structure factor near
freezing in two dimensions.

Other properties of S(q) in three dimensions were subsequently discussed by

Bhatia and March [9]. These authors were concerned with relating the position of the
main peak of S(q) in dense monatomic liquids, denoted again by qm, with the shape

of that peak. This they chose to characterise by the distance between the two

adjacent nodes of S(q)� 1 which embrace the peak maximum at qm: this peak width
being denoted in [9] by 2Dq. The semiquantitative estimate for 3D structure factors
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Figure 1. Maximum S(qm) of liquid structure factor as a function of the coupling parameter �
defined in Equation (1) for the 3D one-component plasma (redrawn from Ferraz and March
[1]). Also shown are two points from available Monte Carlo calculations of the classical 2D
one-component plasma by Gann et al. [3], and the linear extrapolation to �¼125.
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was S(qm)� 0.3qm/Dq. On the other hand, in a semiempirical estimate using five

experimental S(q) curves, Bhatia and March obtained in 3D

SðqmÞ �
3

8

qm
Dq
: ð2Þ

This result essentially follows from the condition that the liquid pair function g(r),

such that g(r)� 1 is the Fourier transform of S(q)� 1, vanishes at r¼ 0. The constant

3/8¼ 0.375 is slightly larger than the semiquantitative estimate 0.3.
We have reworked the 3D analysis of Bhatia and March [9] in 2D, and retaining

the notation 2Dq for the distance between the two adjacent nodes of S(q)� 1 which

embrace the peak maximum at qm we find the semiquantitative result S(qm)�

0.5qm/Dq, which should be compared with Equation (2). Again, we can obtain a

semiempirical estimate using the 2D structure factors from the computer simulations

[3,4] and the results are given in Table 1. The value of S(qm)/(qm/Dq) from the

computer simulations for the 2D OCP at �¼ 90 performed by Gann et al. [3] is 0.46.

The simulations of Broughton et al. [4] for the 2D dense fluid with inverse twelfth-

power interaction give S(qm)/(qm/Dq)¼ 0.43 and 0.51 for the two states with densities

�¼ 0.971 and 0.986, respectively. The average of these three values is 0.47.
In three dimensions, Bhatia and March [9] also looked at the radial distribution

function g(r). Calling rm the position of the main peak of g(r), and defining the width

of the peak, 2Dr, as the distance between the two adjacent nodes of g(r)� 1 which

embrace the peak maximum at rm, they estimated very approximately that

qm
Dq
�

rm
Dr ð3Þ

in dense monatomic fluids. Table 1 contains the results for rm/Dr in 2D from the

computer simulations discussed above. The ratio qm/Dq is in every case larger than

the ratio rm/Dr. If we write qm/Dq¼Crm/Dr, the value of the constant C is 1.14 and

1.28 for the two OCP states, respectively, and 1.62 for the fluid with inverse

twelfth-power interaction, but at least the data in the table shows that rm/Dr
increases when qm/Dq increases.

Table 1. Results for qm
Dq,

SðqmÞ
qm=Dq

and rm
Dr from the computer

simulations of Gann et al. [3] for the 2D one component
plasma and of Broughton et al. [4] for monatomic liquids
interacting via inverse twelfth-power potentials.

Metal qm
Dq

SðqmÞ
qm=Dq

rm
Dr

Gann (�¼ 36) 5.57 0.37 4.87
Gann (�¼ 90) 7.32 0.46 5.71
Gann (�¼ 120) – – 5.59
Broughton (�¼ 0.9706) 10.2 0.43 6.29
Broughton (�¼ 0.9858) 10.2 0.51 6.29

Notes: qm is the position of the main maximum in the structure
factor S(q) and Dq is the width of that peak. rm is the position
of the main peak in the pair distribution function g(r) and Dr is
the width of that peak.
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In [9], it is pointed out that there is a direct connection with Lindemann’s Law of
melting in 3D. Thus, using (S(qm))Tmelt

¼ 2.8 yields from Equations (2) and (3) the
estimate Dr/rm� 0.11. If we define the mean interatomic separation rA in 3D through
� ¼ 3=ð4�r3AÞ, where � is the atomic number density, then according to Faber [10],
Lindemann’s law gives (Dr/rA)Tmelt

� 0.2 if we identify here Dr as the root mean
square displacement of the atoms. Since rm� 1.8rA, these results are pointed out in
[9], to be quite consistent in 3D.

While relating to Lindemann’s law, we have recently considered one version
sometimes quoted that this law implies that STmelt

(0)¼ constant for all monatomic
liquids near freezing. But as shown in [11], this is a poor relation. Fitting to one
metal, Rb, for a wide variety of metals considered, STmelt

(0) is then found to vary by a
factor of 10. Invoking the very recent study of Lawson [12] in 3D, his Figure 2 shows
that kBTmelt/B�, where B is the bulk modulus and � the atomic volume, correlates
with Gruneisen’s constant. But

STmelt
ð0Þ ¼ ð�kBTKTÞTmelt

¼
kBT

B�

� �
Tmelt

ð4Þ

and hence STmelt
(0) correlates also with Gruneisen’s constant.

In the future it would be of obvious interest, in 2D systems like graphene (a
problem is the very high melting temperature of graphite, Tmelt� 4600–4800K [13]),
or, say, thin monatomic metallic films, to examine such correlations that we know to
exist in 3D. But we are not presently aware of any systematic experimental studies of
Gruneisen’s constant in such 2D-like materials.

To conclude, we note that long ago Peierls [14] and Landau [15] both stressed
that a 2D solid does not have the conventional long-range order of the 2D crystal.
Due to long-wavelength phonon fluctuations, the mean square displacement of a
particle from its ideal site in a lattice will diverge as lnN, where N denotes the
number of particles. However, for realistic values of N, Broughton et al. [4] pointed
out that these phonon fluctuations have only a very small effect on the mean-square
displacement.
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